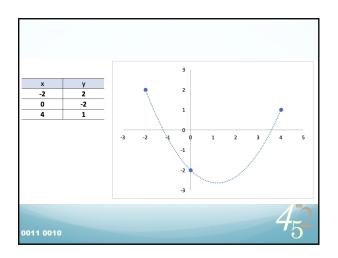
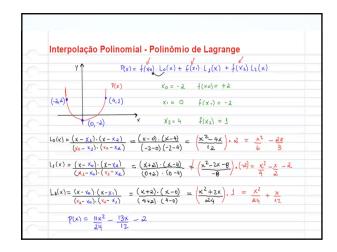
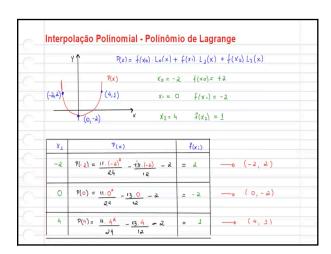


Vamos considerar o conjunto de n+1 pontos (x_k, f_k) , k=0, 1, 2, ..., n, distintos e vamos considerar o polinômio representado por $p_n(x) = f_0 L_0(x) + f_1 L_1(x) + \cdots + f_n L_n(x) = \sum_{k=0}^n f_k L_k(x)$ Logo $p_n(x)$ satisfaz a condição de interpolação, sendo assim, o polinômio interpolador de f(x) nos pontos $x_0, x_1, ..., x_n$. Os polinômios $L_k(x)$ são chamados de **polinômios de Lagrange** e estes são obtidos da seguinte forma: $L_k(x) = \frac{(x-x_0) \ (x-x_1) \ \cdots \ (x-x_{k-1}) \ (x-x_{k-1}) \cdots (x-x_k)}{(x_k-x_0)(x_k-x_1) \cdots (x_k-x_{k-1}) \ (x_k-x_{k+1}) \cdots (x_k-x_n)}$





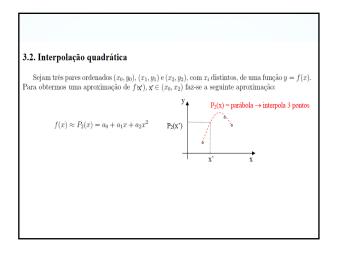


Exemplo: Vamos considerar a tabela de pontos do exemplo anterior e determinar uma aproximação para $f(\theta.3)$ usando a forma de Lagrange. $\frac{x_k \quad 0.0 \quad 0.2 \quad 0.4}{f_k \quad 4.00 \quad 3.84 \quad 3.76}$ Calculando os $L_k(x)$ temos: $L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{(x-0.2)(x-0.4)}{(0-0.2)(0-0.4)} = \frac{1}{0.08}(x^2-0.6x+0.08)$ $L_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} = \frac{(x-0)(x-0.4)}{(0.2-0)(0.2-0.4)} = -\frac{1}{0.04}(x^2-0.4x)$ $L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} = \frac{(x-0)(x-0.2)}{(0.4-0)(0.4-0.2)} = \frac{1}{0.08}(x^2-0.2x)$

Fazendo: $p_n(x)=f(x_0)L_0(x)+f(x_1)L_1(x)+f(x_2)L_2(x)$ Obtemos: $p(x)=x^2-x+4$.

Observe que o polinômio é o mesmo que foi obtido via sistema linear. Isto já era esperado, pois o polinômio interpolador é único.

Desta forma, para $x=0.3\in[0,0.4]$, teremos $f(0.3)\approx p(0.3)=3.79$.



onde $P_2(x)$ é um polinômio interpolador de 2^n ordem, ou grau 2. Impondo que o polinômio interpolador passe pelos três pares ordenados, temos o seguinte sistema de equações lineares de 3^n ordem:

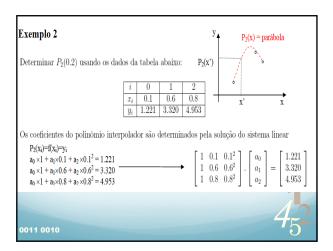
$$P_2(x_0) = y_0$$

 $P_2(x_1) = y_1 \rightarrow \begin{cases} a_0 + a_1x_0 + a_2x_0^2 = y_0 \\ a_0 + a_1x_1 + a_2x_1^2 = y_1 \end{cases}$
 $a_0 + a_1x_1 + a_2x_1^2 = y_1$
 $a_0 + a_1x_2 + a_2x_2^2 = y_0$

ou reescrevendo na forma matricial temos:

$$\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix}$$

O sistema de equações lineares admite uma única solução, pois o $Det(X)=(x_2-x_0)(x_2-x_1)(x_1-x_0)\neq 0$. Desta forma, pelos três pares ordenados passa um único polinômio interpolador de 2º grau. Este fato pode ser generalizado, dizendo-se que por n+1 pontos passa um único polinômio de grau n.



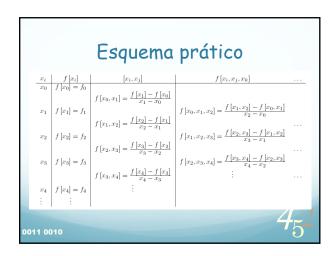
Resolvendo o sistema de baixo para cima temos: $a_2=5.667; \ a_1=0.231 \ a_0=1.141$ Dessa forma o polinômio $P_2(\mathbf{x})$ terá a seguinte forma: $P_2(x)=1.141+0.231x+5.667x^2$

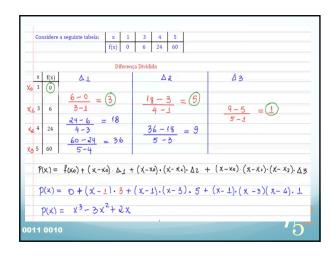
Forma de Newton

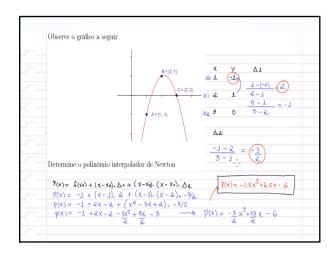
FÓRMULA DE NEWTON PARA O POLINÔMIO INTERPOLADOR

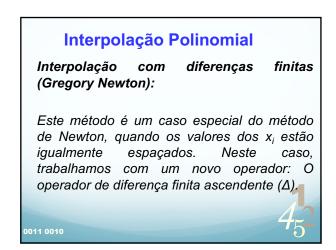
Seja f(x) uma função contínua e com derivadas contínuas em $[a\ ,b]$. Sejam $a=x_0< x_1< \cdots < x_n=b,\ n+1$ pontos distintos da função. Deseja-se construir o polinômio $p_n(x)$ que interpola f(x) nestes pontos.

Aplicando sucessivamente o mesmo raciocínio, obtém-se a fórmula de Newton para o polinômio interpolador dada por: $p_n(x) = f(x_0) + (x-x_0)f[x_0,x_1] + (x-x_0)(x-x_1)f[x_0,x_1,x_2] + \cdots + (x-x_0)(x-x_1)\cdots(x-x_{n-1}) f[x_0,x_1,\cdots,x_n]$ Dica: $P_2(\mathbf{x}) = \mathbf{f}[\mathbf{x}_0] + (\mathbf{x}-\mathbf{x}_0)\mathbf{f}[\mathbf{x}_0,\mathbf{x}_1] + (\mathbf{x}-\mathbf{x}_0)(\mathbf{x}-\mathbf{x}_1)\mathbf{f}[\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_2]$ onde $\mathbf{f}[\mathbf{x}_0] = \mathbf{f}[\mathbf{x}_0]$: $\mathbf{f}[\mathbf{x}_0,\mathbf{x}_1] = \frac{\mathbf{f}[\mathbf{x}_1] - \mathbf{f}[\mathbf{x}_0]}{\mathbf{x}_1 - \mathbf{x}_0} = \frac{\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x}_1 - \mathbf{x}_0} = \frac{\mathbf{f}(\mathbf{x}_2) - \mathbf{f}(\mathbf{x}_1)}{\mathbf{x}_2 - \mathbf{x}_0} = \frac{\mathbf{f}(\mathbf{x}_2) - \mathbf{f}(\mathbf{x}_1)}{\mathbf{x}_2 - \mathbf{x}_0} = \frac{\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x}_2 - \mathbf{x}_0} = \frac{\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x}_2 - \mathbf{x}_0} = \frac{\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_1)}{\mathbf{x}_2 - \mathbf{x}_0} = \frac{\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_2)}{\mathbf{x}_2 - \mathbf{x}_0} = \frac{\mathbf{f}(\mathbf{x}_1)}{\mathbf{x}_2 - \mathbf{x}_0} = \frac{\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_2)}{\mathbf{x}_2 - \mathbf$

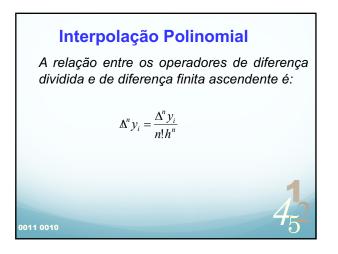








Operador de diferença finita ascendente: Este operador é mais simples de calcular do que o operador de diferenças divididas, pois leva em conta somente os valores de y: Ordem $0: \Delta^0 y_i = y_i$ Ordem $1: \Delta y_i = \Delta^0 y_{i+1} - \Delta^0 y_i$ Ordem $2: \Delta^2 y_i = \Delta y_{i+1} - \Delta y_i$ \vdots Ordem $n: \Delta^n y_i = \Delta^{n-1} y_{i+1} - \Delta^{n-1} y_i$



Fórmula de Gregory Newton:

O polinômio interpolador de Gregory-Newton é encontrado através da seguinte fórmula:

Onde:
$$P_n(x) = y_0 + \sum_{i=1}^n \left[\frac{\Delta^i y_0}{i!} \cdot \prod_{j=0}^{i-1} (u_x - j) \right]$$

 $h \in o$ passo dos valores x_i , ou seja $h=x_{i+1}-x_i$ $u_x \in e$ encontrado através da fórmula:

 $u_{x} = \frac{x - x}{h}$

